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a b s t r a c t

Motivated by the success in image processing, the Mumford–Shah functional has attracted extensive
attentions in geometry processing. Existing methods, mainly focusing on discretizations on the
triangulated mesh, either over-smooth sharp features or are sensitive to noises or outliers. In this
paper, we first introduce a nonsmooth nonconvex Mumford–Shah model for a feature-preserving
filtering of face normal field to ameliorate the staircasing artifacts that appear in the original
Mumford–Shah total variation (MSTV) and develop an alternating minimization scheme based on
alternating direction method of multipliers to realize the proposed model. After restoring the face
normal field, vertex updating is then employed by incorporating the oriented normal constraints and
discontinuities to achieve a detail-preserving reconstruction of mesh geometry. Extensive experimental
results demonstrate the effectiveness of the above shape optimization routine for various geometry
processing applications such as mesh denoising, mesh inpainting and mesh segmentation.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

As a well-known mathematical tool, the Mumford–Shah func-
ional (MS) has been proven successful in image processing [1,2]
ince it was first formally proposed for image segmentation [3].
he most distinguishing feature of minimizing this functional is
hat both a piecewise-smooth image and the set of discontinuities
re obtained at the same time where the former is suitable for
pplications such as image restoration and the latter helps to
evelop a high-quality feature detection. This observation moti-
ates us to go in for further studies of MS functional in geometry
rocessing.
There are several challenges to construct a appropriate ap-

roximations of MS function on 3D mesh. Firstly, as meshes are
rregular in connectivity and sampling, it is difficult to apply
fficient numerical algorithms of regular grids to large unstruc-
ured meshes directly. Secondly, the MS formulation is strongly
ependent on the discretization of differential operators, which
etermines where both piecewise-smooth function and disconti-
uity function are well-defined. Thirdly, it is not clear that what
he piecewise-smooth function and discontinuities represent for
n individual application of geometry processing.

✩ This article was recommended for publication by S. Hahmann.
∗ Corresponding author.

E-mail address: liu.zheng.jojo@gmail.com (Z. Liu).
ttps://doi.org/10.1016/j.cag.2022.06.006
097-8493/© 2022 Elsevier Ltd. All rights reserved.
Fortunately, recent advances have been made on above is-
sues in geometric processing, especially in extending classic ap-
proximations of the MS functional such as Ambrosio–Tortorelli
functional [4] (AT) and Mumford–Shah total variation functional
(MSTV) [5] from image processing to geometry processing. An
outstanding work is that Zhang et al. [6] successfully extended
a convexified version of MS model for mesh segmentation, con-
straining the boundary between different segments to be as short
as possible, but it is not suitable for our model since we are
focusing on how to filter normal field with the MS functional.
In addition, various discretization schemes on 3D signals are
discussed. More specifically, Pokrass et al. [7] defined both mem-
bership function and phase field (discontinuities) on vertices. An
alternative finite element discretization was proposed by Tong
and Tai [8] and discrete exterior calculus discretization was de-
signed in [9,10], which are two similar pointwise schemes to
solve AT approximation on 3D triangulated mesh since the dis-
continuities of both schemes are defined on vertices. In order to
void mismatch between the underlying geometric features and
pointwise features, Liu et al. [11] solved MSTV approximation by
defining discontinuity function on mesh edges, which yields bet-
ter denoised results and locates geometric discontinuities more
accurately. However, this method tends to suppress fine details
due to the using of TV term in model.

In this paper, we propose a nonsmooth nonconvex version of

MSTV approximation for normal filtering and formulate a set of

https://doi.org/10.1016/j.cag.2022.06.006
http://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2022.06.006&domain=pdf
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lassical mesh processing problems. The main contributions of
his work include:

- We present a normal filter using nonsmooth nonconvex
Mumford–Shah regularization which is an extension of the
work of Liu et al. [11], and develop an alternating mini-
mization algorithm based on alternating direction method
of multipliers (ADMM) which recovers high quality of face
normals with neat features and locates discontinuities of the
surface simultaneously.

- We propose a new method for vertex updating by incorpo-
rating the oriented normal constraints and the discontinuity
function optimized from normal filtering, which deforms the
geometry gradually to match the resulted mesh with target
normals while preserving sharp edges.

- We demonstrate the superiority of our approach visually
and numerically on several applications of mesh process-
ing, including mesh denoising, mesh inpainting and mesh
segmentation.

The rest of the paper is organized as follows. We review
elated work in Section 2 and define some basic function spaces
nd associated differential operators in Section 3. The nonsmooth
onconvex Mumford–Shah model for normal filtering and the
ertex updating scheme are presented in Section 4, followed by
n analysis and discussion in Section 5. A number of applications
n geometry processing are illustrated in Section 6. Finally, the
onclusion and future work are discussed in Section 7.

. Related work

.1. Mumford–Shah functional and its Γ -convergence approxima-
ions

In 1989, Mumford and Shah proposed a functional to approxi-
ate an input image in terms of a piecewise-smooth function [3].
or a scalar image u : Ω → R with its discontinuity set C ⊂ Ω ⊂
2, the Mumford–Shah functional is defined as:

MS(u, C) = γ

∫
Ω−C

|∇u|2 + β

∫
C
dH1

+ α

∫
Ω

(u − f )2, (1)

ith f the input image on a two-dimensional planar domain Ω , γ ,
and α are tuning parameters. The first term of Eq. (1) imposes

he smoothness of u everywhere except on the discontinuity set
, the second term minimizes the total edge length of set C in
erms of its one-dimensional Hausdorff measure H1 in R2 and the
ast term denotes the data fidelity term. This model is nonconvex
nd one of the major challenges is to develop efficient algorithms
o find or approximate its minimizer.

Using the Γ -convergence framework, Ambrosio and Tortorelli
pproximated this functional by a sequence of elliptic function-
ls [4]. They proposed to replace the discontinuity set by a smooth
uxiliary function v and Ambrosio–Tortorelli approximation of
q. (1) is given by

AT
ϵ (u, v) = γ

∫
Ω

(v2
|∇u|2)+β(ϵ|∇v|

2
+

(v − 1)2

4ϵ
)+α(u−f )2, (2)

here 0 < v < 1 describes the discontinuity of edges: v(x) ≈ 0 if
∈ C , and v(x) ≈ 1 otherwise, and ϵ is a small positive constant
ontrolling the smoothness of v. And especially, Ambrosio and
ortorelli proved that when ϵ tends to zero in the L2(Ω)-topology
vϵ goes to 1), the minimizer u = uϵ of EAT

ϵ (u, v) approximates a
inimizer u of EMS(u, C).
MSTV approximation [5] was first suggested by Shah, replac-

ng the L2 norm |∇u|2 by a total variation regularizer |∇u| (L1
223
orm), defined as

MSTV
ϵ (u, v) = γ

∫
Ω

(v2
|∇u|) + β(ϵ|∇v|

2
+

(v − 1)2

4ϵ
) + α(u − f )2,

(3)

he Γ -convergence of MSTV approximation (3) was proved by Al-
candro et al. [12]. Several generalizations of MS with
-convergence results were discussed in [13,14,2], and turned
ut the MSTV approximation (3) is more robust to recover much
leaner results. But it tends to suppress fine details, especially in
he case of high noise density.

Inspired by the success of approximations of the original MS
n image processing, they have been extended to process signals
n mesh surfaces based on new discretization schemes [8–11].
lthough they all minimized MS approximations on the normal
ector field of voxel-based data [9] or triangular meshes [8,10,11],
here is still a distinction among their discretizations of disconti-
uity function. More specifically, the discretizations in [8–10] are
ased on pointwise diffusion (defined on vertices), which fail to
atch the underlying geometric features with the discontinuity

unction while Liu et al. [11] calculated the discontinuity function
n edges directly to locate geometric discontinuities.
In this paper, we will exploit a nonsmooth nonconvex version

f MSTV based on the discretization of [11], helping to recover
he weak edges that are smoothed out by the original MSTV.

.2. Nonconvex regularizer and optimization

In general, variational models for signal and image process-
ng mainly consist of two terms. The first term is a fidelity or
ata-fitting term, and the second one is a regularization term
hat recovers edges and smoothes the other homogeneous parts.
t is well known that total variation model [15] is a classic
onvex regularizer ensuring the existence and uniqueness of a
olution and performs well in preserving sharp features, but
nevitably smoothes some weak features and fine details for
heir sparsity requirements. Since the pioneering work of Geman
nd Geman [16], different nonconvex regularizers [17,18] have
een studied either in a statistical or variational framework and
hown remarkable advantages over convex ones for restoring
igh-quality images with neat edges, especially the nonsmooth
onconvex ones. One can refer to [19] for a theoretical expla-
ation for this phenomenon. Specifically, several studies [20–23]
ave utilized nonconvex higher-order regularizers and shown su-
eriority over their corresponding convex ones for image restora-
ion by preserving edges. To find or approximate the global
ptimal solution of nonconvex formulations, various efficient al-
orithms have been proposed, such as smoothing approximation
ethods [24–26], the graduated nonconvexity method [27,28],

teratively reweighted algorithms [29,30], half-quadratic min-
mization [31–33], proximal alternating minimization [34–36],
rimal–dual algorithm [37] and the alternating direction method
f multipliers [38–42]. In this work, we adopt the iteratively con-
ex majorization–minimization method [29,43], which has been
uccessfully extended to solve nonsmooth nonconvex optimiza-
ion problems of image processing problems with convergence
nalysis.

.3. Variational methods in mesh processing

Variational methods have been developed to satisfy some prior
nowledge by optimizing a given functional over a particular
pace or norm, and proven to be one of the most powerful tech-
iques for solving many mesh processing tasks. The main varia-
ional methods in mesh processing include Poisson equation-type
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odel [44], Lloyd’s functional [45], L0-based model [46,47], TV-
ased model [48,49], the curvature energy [50], filtering-based
odel [51,52], low-rank based model [53] and the MS func-

ional [6,8–11]. This work focuses specifically on the applications
f MS functional in the geometry processing.
The MS functional, representing an image as a piecewise-

mooth function, is an important model for image processing in
variational framework. In the last 30 years, various variants
f the MS functional have been proposed and led to numer-
us applications. Generally speaking, image segmentation [54,55]
nd denoising [54] are two main applications which are directly
chieved from the variables being optimized. Inpainting [56] is
odeled possible by removing the data fidelity term inside the
issing area and inpainting the missing pixel under the optimiza-

ion of MS regularizer. We believe the MS functional, as a classical
ool, has the potential to produce more similar applications in ge-
metry processing, and this paper explores a feature-preserving
umford–Shah model via nonsmooth nonconvex regularizer for
everal applications.

. Basic function spaces and operators

In this section, we introduce notations and define some ba-
ic function spaces and associated differential operators, which
ill yield an effective discretization scheme for our nonsmooth
onconvex MSTV over triangular mesh.

.1. Notations

Suppose M ⊂ R3, which is an oriented piecewise linear 2-
manifold that consists of a set of vertices {pi : i = 0, 1, . . . , P−1},
edges {ej : j = 0, 1, . . . , E − 1} and oriented triangles (faces)
{τk : k = 0, 1, . . . , T − 1}. p ≺ e denotes that p is an endpoint of
an edge e, e ≺ τ denotes that e is an edge of a triangle τ , p ≺ τ

denotes that p is a vertex of a triangle τ .
Assume that all triangles are with counterclockwise orienta-

tion and all edges are with randomly chosen fixed orientations,
the relative orientation of an edge e to a triangle τ can be
introduced by sgn(e, τ ) in a similar way as follows. sgn(e, τ ) = 1
denotes that the orientation of e is consistent with the orientation
of τ , otherwise sgn(e, τ ) = −1.

3.2. Function spaces and associated operators

In order to describe piecewise constant signal (e.g. face normal
field) on a triangular mesh M, we first define the piecewise
constant function space U = RT , which is isomorphic to the
piecewise constant function space on M. For example, u =

(u0, . . . , uT−1) ∈ U means that the value of u restricted on the
triangle τ is uτ , which is written as u|τ sometimes. In order to
further describe function v in Eq. (3), we define the edge function
space V = RE (sometimes denoted as E), whose elements are
defined at the edges of M. For example, v = (v0, . . . , vE−1) ∈ V
means that the value of v restricted on the edge e is ve, which is
written as v|e sometimes.

We equip space U and V with the standard Euclidean inner
product and norm as follows. For any u1, u2, u ∈ U , we define

(u1, u2)U =

∑
τ

u1
τu

2
τ sτ , ∥u∥U =

√
(u, u)U , (4)

where sτ is the area of triangle τ .
For any v1, v2, v ∈ V , we define

(v1, v2)V =

∑
e

v1
e v

2
e len(e), ∥v∥V =

√
(v, v)V , (5)

where len(e) is the length of edge e.
224
Fig. 1. Illustration on differential operators. (a) [v]l over the line l plotted in
yan in triangle τ with barycenter plotted in red; (b) H(e) assembles all lines
associated with the edge e (plotted in cyan) and the set of el associated with
the lines contained in H(e) refers to four edges (plotted in yellow).

We further define the differential operators ∇M, divM, and
△M on M approximated by using first order finite differences.
For u ∈ U , the gradient operator ∇M : U → V is given by

∇Mu|e =

⎧⎨⎩
∑
τ ,e≺τ

uτ sgn(e, τ ), e ⊈ ∂M

0, e ⊆ ∂M
, ∀e. (6)

For v ∈ V , the divergence operator divM : V → U , as the
adjoint operator of −∇M, is written as

(divMv)|τ = −
1
sτ

∑
e≺τ ,

e⊈∂M

vesgn(e, τ )len(e), ∀τ . (7)

The Laplace operator ∆M : U → U is expressed as

(∆Mu)|τ = −
1
sτ

∑
e≺τ ,τ∩τe=e,

e⊈∂M

(uτ − uτe )len(e), ∀τ . (8)

To describe the diffusion of function defined at mesh edges,
e will give the definitions of operators ∇E , divE and ∆E on the
dge function space V . Again, these operators are approximated
y first order finite differences.
Let l be a line connecting the barycenter and one vertex of

he triangle τ with two connected edges e+ and e−. e+ en-
ers the common vertex in the counterclockwise direction with
gn(e+, l) = 1, whereas e− leaves the vertex in the counter-
lockwise direction with sgn(e−, l) = −1. All the aforementioned
escriptions are illustrated in Fig. 1a. Then, for any v ∈ V , we
efine the jump of v over a line l as

v]l = ve+sgn(e+, l) + ve−sgn(e−, l), (9)

he gradient operator ∇E : V → W ⊆ R3×T is given by

∇Ev)|l = [v]l, ∀l. (10)

he W space is equipped with the following inner product and
orm:

w1, w2)W =

∑
l

w1
|lw

2
|llen(l), ∥w∥W =

√
(w, w)W , (11)

or any w1, w2, w ∈ W , where len(l) is the length of line l. The
divergence operator divE : W → V , which is the adjoint operator
of ∇E , can be derived using the inner products in V and W , as
follows

(divEw)|e = −
1

len(e)

∑
wlsgn(e, l)len(l), ∀e. (12)
l∈H(e)
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here H(e) is the set of lines associated with the edge e, indicated
s the cyan lines in Fig. 1b.
Based on the gradient operator (10) and divergence opera-

or (12), the Laplace operator ∆E = divE∇E : V → V can be
derived as

(∆Ev)|e = −
1

len(e)

∑
l∈H(e)

(ve − vel )len(l), ∀e. (13)

here el is the edge sharing the common vertex of e and l,
indicated as yellow line in Fig. 1b.

We refer the readers to [48,11] for more details about the
above operators.

To handle vectorial data in some applications, it is necessary
to extend above descriptions to vectorial cases. Given the vec-
torial spaces U = U × · · · × U  

M

, V = V × · · · × V  
N

and W =

× · · · × W 
K

, the inner products and norms in U, V and W are

defined as follows

(u1,u2)U =

∑
1≤i≤M

(u1
i , u

2
i )U , ∥u∥U =

√
(u,u)U,

v1, v2)V =

∑
1≤j≤N

(v1
j , v

2
j )V , ∥v∥V =

√
(v, v)V,

w1,w2)W =

∑
1≤k≤K

(w1
i , w

2
i )W , ∥w∥W =

√
(w,w)W.

. Nonsmooth nonconvex Mumford–Shahmodel over surfaces

This section describes our model for mesh processing by uti-
izing the operators introduced in Section 3, which extends the
odel of Liu et al. [11] to a nonsmooth nonconvex version for
ormal filtering. We also develop an efficient optimization al-
orithm based on alternating direction method of multipliers
ADMM) to solve our model. Then, we present a vertex updating
cheme to deform a mesh to the resulted normal field, recovering
he underlying features with high mesh quality. For simplicity
f descriptions and comparisons, we denoted two MS-related
ethods on mesh by MSAT [10] and MSTV [11].

.1. Nonsmooth nonconvex MSTV normal estimation

For a given orientable triangular mesh, we denote raw face
ormal vectors as N0

= [n0
0, . . . ,n

0
T−1] ∈ R3×T , which are

omputed by

0
i =

(v0i1 − v0i2 ) × (v0i3 − v0i2 )

∥(v0i1 − v0i2 ) × (v0i3 − v0i2 )∥
, (14)

here v0i1 , v
0
i2
, v0i3 ∈ R3 are its vertex positions enumerated ac-

ording to the orientation. To recover the underlying face normal
ectors with fine details, we introduce a nonsmooth nonconvex
ersion of the vectorial MSTV approximation (3) with unit nor-
al constraints (denoted as NMSTV), and consider its discretized
ersion as follows:

min
∈CN,v∈V

{
E(N, v) =γ

∑
e

v2
eφ(∥(∇MN)|e∥)len(e)

+ β

(
ϵ∥∇Ev∥

2
W +

∥v − 1∥2
V

4ϵ

)
+ α∥N − N0

∥
2
U

}
,

(15)
225
where CN = {N ∈ R3×T
: ∥Nτ∥ = 1, ∀τ }, ϵ is small constant fixed

by 0.001 in our implementation. φ is a nonsmooth nonconvex
function such as

φ1(|t|) =
|t|

1 + ρ|t|
, or φ2(|t|) =

1
ρ

log(1 + ρ|t|), (16)

which formulates nonconvex approximations to |t| as ρ → 0
(nonsmooth at zero).

Here, we briefly discuss the properties of φ. To protect edges
from oversmoothing, the growth condition on φ should be im-
posed by limt→∞ φ(t) = c (c is a constant), so that the nonconvex
term does not penalize the formulation of strong gradient of N. In
other words, its contribution is preferable to protect large details
and sharp features or in the presence of high level of noise. On
the other hand, limt→0+

φ(t)
t = 1 should be enforced to ensure

that φ(t) has the similar behavior as the TV regularizer for meshes
with weak edges or few discontinuous transitions, so that N can
be better smoothed in homogeneous regions without staircasing
effects. According to the work of in [57], φ1 is well adapted
for the reconstruction of piecewise-constant signals while φ2 is
more suitable to reconstruct piecewise-smooth signals. Since the
normal vector field of 3D mesh is mostly piecewise-smooth, we
choose the log function φ2 as our nonconvex function. Because
our work aims to show the superiority of nonsmooth nonconvex
regularizers, a comparison of nonconvex regularizers is beyond
the scope of this paper.

Note that the two unknowns N and v are coupled in Eq. (15),
our idea is to use the variable splitting technique to reformulate
the unconstrained model into the following constrained problem
as

min
N∈CN,v∈V ,

p∈V

{
γ

∑
e

v2
eφ(∥pe∥)len(e)

+ β

(
ϵ∥∇Ev∥

2
W +

∥v − 1∥2
V

4ϵ

)
+ α∥N − N0

∥
2
U

}
,

s.t. p = ∇MN.

(17)

e adopt the iteratively reweighted l1 algorithm (IRLA) [29]
o model (17), and a convex minimization problem to update
N, v, p) is given by

min
N∈CN,v∈V ,

p∈V

{
γ

∑
e

v2
e p̃

k
e∥pe∥len(e)

+ β

(
ϵ∥∇Ev∥

2
W +

∥v − 1∥2
V

4ϵ

)
+ α∥N − N0

∥
2
U

}
,

s.t. p = ∇MN.

(18)

ith p̃k
=

1
ρ∥pk∥V+1

. Problem (18) is a l1 related convex opti-
mization and can be efficiently solved by ADMM, which yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nk+1
= arg min

N∈CN
α∥N − N0

∥
2
U +

rp
2

∥∇MN − pk
−
λkp

rp
∥
2
U,

pk+1
= argmin

p∈V
γ

∑
e

(vk
e )

2p̃k
e∥pe∥len(e)

+
rp
2

∥p − (∇MNk+1
−
λkp

rp
)∥2

V,

vk+1
= argmin

v∈V
γ

∑
e

v2
e p̃

k
e∥p

k+1
e ∥len(e)

+ β

(
ϵ∥∇Ev∥

2
W +

∥v − 1∥2
V

4ϵ

)
,

k+1 k k+1 k+1

(19)
λp = λp − νrp(p − ∇MN ).
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here the penalty parameter rp > 0 is a fixed constant, and the
elaxation ν ∈ (0, (

√
5 + 1)/2] is required for the convergence of

he ADMM algorithm.
The N-subproblem in problem (19) is a quadratic minimization

ith unit normal constraints. Here we employ an approxima-
ion strategy to solve the problem. Specifically, we first solve a
uadratic programming for Nk+1 and then project the minimizer
nto a unit sphere to satisfy the unit normal constraints. The
uler–Lagrange equation is given as follows

p(∆MN) − 2αN = divM(rppk
+ λkp) − 2αN0, (20)

his equation can be reformulated into a sparse linear system and
olved by efficient sparse linear solvers, such as Eigen, Taucs, and
ath Kernal Library (MKL).
The p-subproblem in problem (19) is solved separately on each

dge since the minimization problem can be spatially decoupled
espect to edge. Hence, for each pe, the following simplified
roblem is needed to be solved

min
pe

γ (vk
e )

2p̃k
e∥pe∥ +

rp
2

∥pe −
(
(∇MNk+1)|e −

λkpe

rp

)
∥
2
V, (21)

hich has a closed form solution

e =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 −

γ (vk
e )

2p̃k
e

rp∥ψk+1
e ∥V

)ψk+1
e , ∥ψk+1

e ∥V >
γ (vk

e )
2p̃k

e

rp

0, ∥ψk+1
e ∥V ≤

γ (vk
e )

2p̃k
e

rp

, (22)

where ψk+1
= ∇MNk+1

−
λkp
rp
.

The v-subproblem in problem (19) is also a quadratic pro-
ramming and the corresponding Euler–Lagrange equation is
iven as follows

2γ p̃k
∥pk+1

∥ +
β

2ϵ
)v − 2βϵ(∆Ev) =

β

2ϵ
. (23)

Plugging the Laplace operator in Eq. (13), we can rewrite the
bove equation as a sparse linear system, which again can be
olved by linear solvers.
Finally, the iterative algorithm to solve our NMSTV model (15)

s summarized in Algorithm 1.

Algorithm 1 The IRLA with ADMM algorithm for NMSTV normal
estimation
Initializations: Set k = 0, (v0, p0

;λ0p) = 0, p̃0
= 1 and

parameters α, β , γ , ϵ, ρ, rp, ν and ε1;
Repeat

(1) For fixed (pk
;λkp), compute Nk+1 according to Eq. (20);

(2) For fixed (Nk+1, vk
;λkp), compute pk+1 according to Eq. (22);

(3) For fixed pk+1, compute vk+1 according to Eq. (23);
(4) Update Lagrange multiplier λk+1

p according to Eq. (19);

Until ||Nk+1
− Nk

||U < ε1 or k ≥ 30;
Return Nk+1.

Remark 1. Here, we analyze the effect of our nonconvex reg-
ularizers on feature recovery of normal estimation, superior to
that of the original MSTV [11]. For the p-subproblem in Eq. (21),
since p̃k

e < 1, the weight function p̃k
e(v

k
e )

2 in our NMSTV is less
than (vk

e )
2 in MSTV [11]. This illustrates that our model smoothes

edges less where ∇MN > 0, which produces high-quality face
normals with sharp features just as shown in Fig. 2. For each
testing method, we compare the denoised (feature extraction)
results and the corresponding discontinuity functions via color
226
coding. From the figure, we can observe that MSTV almost obtains
the same result as ours when weak noise is corrupted while the
nonconvex one performs better than others with the increased
noise. Please refer to more numerical examples in Section 6.

4.2. Vertex updating

After estimating the face normal field by the proposed NMSTV
model, we need to deform the mesh by moving its vertices such
that the face normal vectors match the prescribed normal field. To
matching normals, existing methods usually minimize an energy
of enforcing orthogonality between the new edge vectors and
the target face normals [58], which are efficient but lack control
over inversions because of the triangle-wise orientation ambi-
guity. To address this issue, we take both the constraint-based
optimization and the discontinuity function v of normal filtering
into account, enforcing the oriented normals as soft constraints
and encoding a fairness regularization with the discontinuities.

Minimizing energy. Let V0
= [v00, . . . , v

0
P−1] ∈ R3×P be the

original vertex positions, and N̂ = [n̂0, . . . , n̂T−1] ∈ R3×T the
arget face normal field with a collection of feasible sets C =

C0, . . . , CT ]. The new vertex positions V = [v0, . . . , vP−1] are
chieved by minimizing the following energy

min
,P∈C

{
ω1

T−1∑
i=0

∥MVfi − Pi∥
2
F + ω2

∑
e

v2
e ∥vi1 + vi2 − vi3 − vi4∥

2
F

+ ω3∥V − V0
∥
2
F

}
,

(24)

here Vfi ∈ R3×3 stores the oriented vertex positions of face fi in

ts rows, the matrix M =
1
3

[ 2 −1 −1
−1 2 −1
−1 −1 2

]
produces the mean-

entered constraint vertex positions for a face, and Pi ∈ R3×3

represents the closest projection of MVfi onto the corresponding
feasible set Ci. τ1 = (vi1 , vi2 , vi3 ) and τ2 = (vi1 , vi4 , vi2 ) are
eighbor triangles associated with the edge e = (vi1 , vi2 ).
Here the first term penalizes the violation of oriented normal

onstraint for each face through a distance measure, and aims
o find a direct solution or least-squares one in the feasible sets
. The use of mean-centering matrix M adopts the translation-
nvariance of the oriented normal constraint to allow for faster
onvergence of the solver [59,60]. The second term utilizes the
iscontinuity function v to guide neighboring triangles to share
eometric normals as similar as possible, smoothing the de-
ormed edge where ve ≈ 1 while keeping sharp edges where
e ≈ 0. For each edge e, the last term prevents vertices to depart
oo much from their original positions V0. ω1, ω2 and ω3 are
ser-specified positive parameters, and the setting of ω2 and ω3
re discussed in Section 5.2 while ω1 is fixed to 1 by default
hroughout all our experiments.

Solving for positions. Following the approach of [59,61], we
olve the optimization problem (24) via an alternating minimiza-
ion scheme of V and P.

Firstly, we fix V and update P. We separate this problem
o a set of subproblems {Pi} with respect to each face fi and
olve in parallel. Each subproblem searches for an solution that
rojects MVfi onto the plane orthogonal to n̂i. Obviously, the
losest projection P̂i can be computed as MVfi (I3 − n̂in̂T

i ). Let ni
e the oriented unit normal for the current vertex positions MVfi ,

we achieved the possible solutions for Pi according to the relation
between ni and n̂i

Pi =

{
P̂i, ni · n̂i ≥ 0
ˆ T

(25)

Pi(hh ), ni · n̂i < 0
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Fig. 2. Feature-preserving comparison of different Mumford–Shah models on different levels of noise. (a) shows Fandisk corrupted with σ = 0.1l̄e and σ = 0.2l̄e , each
olumn from (b) to (d) shows denoised (feature extraction) results and corresponding discontinuity functions produced by MSAT [10], MSTV [11] and our proposed
odel, where v(x) = 0 indicates the discontinuous areas (features) and v(x) = 1 indicates the smooth areas.
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here h is the right-singular vector of P̂i corresponding to its
argest singular value.

Next, we fix P and update V. This is equivalent to

min
V

ω1∥KV − P∥
2
F + ω2∥HV∥

2
F + ω3∥V − V0

∥
2
F , (26)

here the sparse matrix K ∈ R3T×P collects the mean-centering
atrix coefficients for each face and the sparse matrix H com-
ines the discontinuity function v and related vertices for each
dge. This amounts to solve the following normal equations

ω1KTK + ω2HTH + ω3IP )V = ω1KTP + ω3V0. (27)

where IP is the P × P identity matrix. Since the left-hand matrix
is fixed during all iterations, we can pre-factor it using sparse
Cholesky factorization once to allow for efficient solving in each
iteration.

The above alternating minimization is repeated until conver-
gence and sketched in Algorithm 2.

Algorithm 2 The alternating minimization for vertex updating
Initializations: Set k = 0, parameters ω1, ω2, ω3 and ε2;
Repeat

(1) For fixed Vk, compute Pk+1 according to Eq. (25);
(2) For fixed Pk+1, compute Vk+1 according to Eq. (27);

Until ||Vk+1
− Vk

|| < ε2 or k ≥ 30;
Return Vk+1.

Our vertex updating method can efficiently compute a new
esh that is consistent with the target face normals, while being
lose to the original mesh shape with rich geometric details.
specially, a fairness term is designed by considering the discon-
inuity function and favors more regular near-Delaunay meshes,
ven prevents the reconstructed vertices from overlapping. Fig. 3
ompares our approach with the vertex updating method pro-
osed in [10,60]. For each method, we visualize the aspect ratio
f each triangle κτ = 1 −

θmin
π/3 (θmin is the minimum angle of

riangle τ ) via color coding, evaluate the mean square angular
rror (MSAE) between face normals of the resulting mesh and
he original mesh, the vertex deviation Ev,h of the denoised result
rom the underlying clean surface and the number of inverted
riangles. The resulting mesh using our method with a fairness
227
erm (shown in the last column of Fig. 3) is noticeably closer to
he original mesh from the comparisons of MSAE and Ev,h in the
brackets. Moreover, our method achieves the best uniformity of
mesh without overlap, even for the input mesh corrupted by of
high level of impulsive noise with random directions.

5. Analysis

5.1. Implementation details

The proposed method is implemented in C++ on a windows
10 platform with an Intel Corei7 at 3.5 GHz and 16 GB RAM,
using Eigen for all linear algebra operations and OpenMP for
parallelization. Since the coefficient ρ determines the degree of
non-convexity of regularizers, we use weaker non-convexity (ρ =

0.1) to achieve a smoother normal field for non-CAD models and
use stronger non-convexity (ρ = 0.9) to keep more sharp edges
for CAD models. For the parameters in Algorithm 1, the default
setting is as follows: ϵ = 0.001, ν = 1.618, rp = 1, ε1 = e−6 and
k = 30. For the parameters in Algorithm 2, we fix ω1 = 1, ε2 =
−6 and k = 30. The setting of other parameters is discussed in
ection 5.2 in detail. In addition, we present a full explanation of
ow parameters are in a special setting for a specific application
n Section 6.

.2. Parameters setting

Our normal estimation is influenced by three parameters: α,
and γ , which balance fidelity, filtering and discontinuity terms
f Eq. (15). Specifically, α plays an important role in preventing
he solution deviating from far from the input. To produce satis-
actory results, on one hand, α is suggested with smaller values
or CAD meshes and with larger values for non-CAD and scanned
eshes. On the other hand, α is first set in a suggested range
ith lower values for higher level of noise before β and γ are
djusted. Fig. 4 shows the effect of α on denoising results of a
on-CAD mesh.
1/β represents the length of located discontinuity edges, the

maller value produces longer discontinuities and thus less
mooth denoising results, as shown in Fig. 5. This fully explains
hy filtering and feature detection are complementary in mesh
enoising. Extensive experimental results show that there exists
range ([0.005, 0.5]) for β that can produce satisfactory results.
controls the impact of nonsmooth nonconvex TV regularization
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Fig. 3. Illustration on the property of our fairness term. (a) the original model; (b) noisy models corrupted by two different levels of impulsive noise with random
direction; (c) denoised results achieved by MSAT [10] where discontinuity function v on edge e in vertex updating was set as the mean value of two vertices
f this edge; (d) denoised results achieved by our NMSTV normal estimation and vertex updating without fairness; (e) denoised results achieved by our NMSTV
ormal estimation and vertex updating with a fairness term solved by Algorithm 2, where ve is solved from the normal filtering. The color encodes κτ = 1 −

θmin
π/3

haracterizing the uniformity of meshes, where θmin is the minimum angle of triangle τ . The numbers in bracket below the figure are MSAE (×10−3), Ev,h (×10−2)
and number of inverted triangles respectively.
l

m
γ

Fig. 4. Impact of parameter α on denoising results. The first column shows the
input noisy mesh (corrupted by impulsive noise with σ = 0.1l̄e), each column
from the second to the fourth shows a denoised mesh achieved with different α

nd the corresponding error maps using the mean angular difference between
he face normals of a denoised mesh and its ground truth mesh. The numbers
n bracket below the figure are MSAE (×10−3) and Ev,h (×10−2). The smaller
alue of α usually yields an over-smooth result while the larger one always fails
o remove noise effectively.

n our NMSTV model, which increases with the increase of noise
evel. A smaller γ cannot remove noise effectively while a larger
will oversmooth sharp features, as shown in Fig. 6. Similar to
, there exists a range ([0.5, 10]) for γ that leads to promising
esults.

In vertex updating optimization, there are two parameters ω2

nd ω to balance the fairness and fidelity term. ω is introduced
3 2

228
Fig. 5. Impact of parameter β on denoising results. From left to right: original
mesh, noisy mesh (corrupted by Gaussian noise with σ = 0.1l̄e) and denoising
results with β = 0.1 and β = 0.01, respectively. The smaller value of β produces
onger features and more discontinuities.

Fig. 6. Impact of parameter γ on denoising results. From left to right: noisy
esh (corrupted by Gaussian noise with σ = 0.1l̄e) and denoising results with
= 1, γ = 5 and γ = 30, respectively. The smaller value of γ cannot remove

noise effectively, while the larger one always smoothes feature edges.

to prevent a large number of flipped triangles when matching
prescribed normal field, ω3 penalizes the deviation between the
new vertex positions and the input ones. For producing satisfac-
tory results, ω2 is suggested with smaller values for meshes of a
slight noise and with larger values for meshes of severe noise. In
contrast, ω3 is suggested with larger values for meshes of a slight
noise and with smaller values for meshes of severe noise. In our
implementation, they are both set in the range of [0.001, 0.1].
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Fig. 7. Impact of parameter ω2 on denoising results. The first column shows the
input noisy mesh (corrupted by impulsive noise with σ = 0.2l̄e), each column
from the second to the fourth shows a denoised mesh achieved with different ω2
and the corresponding error maps using the mean angular difference between
the face normals of a denoised mesh and its ground truth mesh. The numbers
in bracket below the figure are MSAE (×10−3), Ev,h (×10−2) and number of
inverted triangles respectively. The smaller value of ω2 usually results in poor
mesh quality even overlaps, while the larger one always smoothes and shrinks
the results with high distortions.

Fig. 8. Results of different Mumford–Shah models on irregular sampling mesh
(corrupted by Gaussian noise with σ = 0.3l̄e). The first column shows the input
oisy surface, each column from the second to the fourth shows a denoised mesh
nd the corresponding error maps using the mean angular difference between
he face normals of a denoised mesh and its ground truth mesh.

ixed ω3 = 0.01, we show the effect of varying ω2 in Fig. 7.
or comparison, we visualize the error map for the normals with
SAE. From the figure we can observe that the smaller value
f ω2 usually results in poor mesh quality even overlaps, while
he larger one always smoothes and shrinks the results with high
istortions.

.3. Robust to irregular sampling

To test the sensitivity of our method to irregular sampling,
yramid model with irregular sampling is compared in Fig. 8.
or each testing method, we compare the denoised results and
isualize the error map for the normals with MSAE. As we can see,
lthough the noisy meshes are of varying density distributions,
ur results still show compelling quality, especially in the feature
nd irregular sampling regions.

.4. Robust to different levels of noise

To test the sensitivity of our method to different levels of
oise, Fig. 9 shows a comparison on the feature extraction with
wo Mumford–Shah models including MSAT [10] and MSTV [11],
here the first row is with moderate noise and the second with
xtreme one. Results show that our method is more robust to
229
Fig. 9. Feature extraction on meshes corrupted by different levels of noise. First
row: feature lines on meshes with a moderate noise level from MSAT [10],
MSTV [11] and NMSTV, respectively. Second row: feature lines on meshes with
a extreme noise level from MSAT [10], MSTV [11] and NMSTV, respectively. Our
method are more robust to extract features of extreme noise levels.

Fig. 10. Illustration on the convergence of Algorithms 1 and 2. These plots
illustrate that, as the iteration number k increases, the minimizing solution Nk

and Vk both converge to their fixed points within a few iterations.

noise on feature extraction, making our method suitable for the
denoising application.

5.5. Convergence analysis

In our normal estimation, an inner alternating minimization
scheme is applied to decrease the energy monotonically and
a partial convergence of the IRLA in problem (18) for solving
the constrained problem (17) can be obtained. In other words,
the sequence {Nk, pk, vk

} generated by problem (18) is bounded
and has at least one accumulation point. That is, there exists
a converging subsequence to an accumulation point. However,
the nonconvex log function in problem (17) is not a sum of a
convex function; thus, we cannot even assure the local conver-
gence (see [29] for more details). In vertex updating, an iterative
two-step minimization strategy is employed and guaranteed to
converge monotonically to a local minimum, even though this
minimum is not necessarily reached in a finite number of steps.
The convergence rate depends on the conditions of the problem
and the projection functions involved (see [59] for more details).

In Fig. 10, we display plots of ∥Nk+1
− Nk

∥
2 and ∥Vk+1

− Vk
∥
2

with respect to iterations of k in Algorithms 1 and 2 (take the
model in Fig. 8 for an example). We can observe that, from
two curves, the minimizing solution Nk and Vk both converge to
their fixed points within a few iterations. Although the energy
∥Nk+1

−Nk
∥
2 in Algorithm 1 increases abruptly at 18th iteration,

it eventually decreases. Therefore, this figure indicates that our
proposed algorithms asymptotically solve the original normal
estimation and vertex updating problem.
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Fig. 11. Denoising results and comparisons. The first two rows illustrate denoising on CAD meshes, the middle two rows illustrate denoising on non-CAD meshes
and the last two rows illustrate denoising on scanning data. Visual comparisons show the superior performance of our method in simultaneously preserving features
and recovering smooth regions.
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6. Applications

In this section, we demonstrate the effectiveness of our ap-
proach on several geometry processing applications, including
denoising, inpainting and segmentation. Meanwhile, we compare
the proposed method with various state-of-the-art methods in
each application. For fair comparisons, the results for comparison
are all from the source codes or already-trained models obtained
from the original authors and the parameters are set to be optimal
according to the original papers.

6.1. Denoising

Given an input noisy mesh, our method smoothes out noise
while preserving sharp features. For this application, we solve
for the nonsmooth nonconvex MS functional to estimate the
normal vector field, and then deform mesh vertices to match the
estimated normals. To demonstrate the performance of our pro-
posed approach on noise removal, we compare with six popular
230
methods. Among these competitors, L0 [46] and TGV [49] are two
models of variational framework, MSAT [10] and MSTV [11] are
Mumford–Shah methods, NLLR [62] is nonlocal-based method,
and CNR [63] is a data-driven method. Fig. 11 shows a compari-
son both on synthetic shapes perturbed using a Gaussian noise
and realistic noisy LiDAR scanning data. First, L0 always over-
moothes small-scale features while over-sharpens medium-scale
eatures, transforming smooth regions into piecewise constant
nes (see Fig. 11b); CNR is effective in preserving medium-scale
eatures (see Block model in Fig. 11c) but it may smooth small-
cale features and fine details (see Child model in Fig. 11c);
n contrast, NLLR recovers some small-scale features in a bet-
er matter (see Bunny model in Fig. 11d) while over-smoothes
arge-scale features (see Block model in Fig. 11d); MSAT usually
reserves sharp features well, but produces some false edges
n smooth regions even overlaps due to its smoothing strategy
or the discontinuity function (see Fig. 11e); MSTV produces
learer feature-preserving results but still induces slight staircase
ffects appeared in smooth regions (see Fig. 11f); the results
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n time (in seconds) respectively.
TGV [49] Ours

3.24, 1.15, 0, 5.98 2.55, 0.84, 0, 1.10
27.80, 1.27, 67, 4.80 20.02, 0.73, 36, 1.08
24.20,0.58, 5, 29.54 24.81, 0.38, 3, 7.32
24.44, 1.32, 3, 21.13 16.68, 0.54, 2, 2.20
59.79, 3.57, /, 43.13 57.50, 3.39, /, 3.84
89.42, 2.29, /, 24.27 88.36, 2.27, /, 6.88

231
Table 1
Quantitative evaluation of the results in Fig. 11. For each result, we compared MSAE (×10−3), Ev,h (×10−2), number of inverted triangles and the executio
Mesh L0 [46] CNR [63] NLLR [62] MSAT [10] MSTV [11]

Block 4.68, 1.12, 1, 3.01 2.57, 0.86, 0, 0.72 67.31, 2.30, 0, 2.75 8.42, 1.74, 0, 16.30 5.18, 1.21, 0, 0.98
Sharp-sphere 32.39, 1.16, 46, 2.66 64.88, 1.29, 178, 0.79 175.31, 1.69, 403, 2.32 76.43, 1.92, 97, 20.14 45.11, 1.63, 67, 0.96
Child 42.54, 0.58, 7, 24.11 31.62, 0.52, 15, 3.75 21.57, 0.42, 6, 10.59 44.93, 0.89, 30, 112.11 41.39, 0.82, 11, 5.88
Bunny-hi 24.08, 0.71, 4, 16.14 12.95, 0.66, 2, 2.43 16.01, 0.78, 5, 6.696 18.77, 0.79, 2, 72.84 19.26, 0.80, 3, 3.91
Cone 58.31, 3.71, /, 8.28 67.76, 2.78, /, 1.81 63.40, 2.99, /, 54.32 66.94, 2.90, /, 57.93 63.87, 3.35, /, 3.43
David 93.22, 2.35, /, 15.43 94.17, 1.94, /, 3.78 100.54, 2.20, /, 171.35 90.83, 2.63, /, 95.24 100.36, 2.23, /, 5.79
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Fig. 12. Inpainting results and comparisons. The original models (a) are edited by eliminating several triangles, thus creating models with hole (b). Inpainting results
from different algorithms are shown in (c)–(f). Compared with the original models, our results are more robust to repair the hole area while recovering sharp features
and fine details even varying sizes and numbers of holes are considered.
produced by TGV and our method NMSTV look more natural and
detail-preserving than those produced by the other methods (see
Fig. 11g and h).

To further evaluate the quality of the denoising results, we
dopt MSAE to measure mean square angular error between face
ormals of the denoised mesh and the ground truth, and use
he vertex-based Hausdorff distance Ev,h to measure the position
rror between the denoised mesh and the ground truth. These
wo error metrics are widely suggested in previous works [11,48,
9,64,65]. Table 1 lists MSAE, Ev,h, number of inverted triangles
nd the execution time (in seconds) of examples in Fig. 11 from
ach method. Since the ground truth of each scanning data has
elf intersections, the statistics of number of inverted triangles
232
for them are omitted. From Table 1, our method achieves the least
amount of error with the least overlaps on all types of the tested
meshes (CAD, non-CAD, and scanned meshes) in most cases. In
addition, the execution time of our method is comparable to
that of other methods. As we can see from Table 1, CNR is the
fastest method, thanks to its pre-trained neural networks. MSAT
is the slowest for synthetic meshes, while NLLR is the slowest for
scanned data. MSTV and our NMSTV are slower than CNR, but
significantly faster than L0 and TGV.

Overall, in most cases, our method produces much better
results in terms of visual quality and error metrics at reasonable
running time, which sufficiently shows the merit of the nons-
mooth nonconvex regularization and efficient vertex updating.
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Table 2
The max, mean and root mean square (RMS) of Hausdorff distances (10−3) between original shapes and corresponding results from
different inpainting methods.
Models CGAL [66] MeshFix [68] MSAT [10] Ours

Cube (50.453, 0.704, 4.521) (32.705, 0.197, 2.148) (24.819, 2.358, 3.871) (4.527, 1.558, 2.062)
Fandisk (17.560, 0.113, 1.036) (26.662, 0.249, 1.944) (15.775, 0.345, 1.211) (9.020, 0.534, 1.209)
Ccylinder (26.814, 0.070, 0.914) (26.495, 0.062, 0.909) (19.505, 0.317, 0.800) (2.968, 0.238, 0.485)
Octa-flower (9.396, 0.018, 0.313) (13.078, 0.029, 0.484) (8.346, 0.129, 0.431) (5.896, 0.275, 0.502)
Foot (4.175, 0.049, 0.333) (11.487, 0.102, 0.685) (6.152, 0.225, 0.646) (2.962, 0.042, 0.208)
Chinese-lion (5.694, 0.005, 0.074) (8.400, 0.008, 0.144) (5.480, 0.028, 0.141) (5.213, 0.033, 0.013)
Fig. 13. Our segmentation results on both CAD and non-CAD models. Our method produces segmentations with boundary-preserving and piecewise smooth parts.
f
(
p

.2. Inpainting

Inpainting aims to fill in the missing areas of a mesh. To
erform mesh inpainting, one should first extract the hole bound-
ries and triangulate the missing areas. In this work, we employ
he hole filling algorithm [66] implemented in CGAL [67] to
ecover the topology of the missing areas. Following [10], we set
he data attachment terms α and ω3 of normal estimation and
ertex updating to a large value outside of the missing areas to
revent known vertices frommoving, and ω3 to a very small value

inside. To better recover longer features of the inpainted areas, we
set β to one tenth of its original value inside the inpainted areas,
producing less smooth inpainting results. Finally, we perform the
NMSTV normal estimation in Section 4.1 and vertex updating in
Section 4.2 for a feature-preserved inpainting result.

We compare our method with three inpainting methods, in-
cluding CGAL filling [66], MeshFix [68] and MSAT [10]. With a
better detail-preserving normal estimation and efficient vertex
updating, missing parts can be well reconstructed in a feature-
sensitive manner. Visual examples of inpainting results are pro-
vided in Fig. 12, which contain different scales of features on CAD
and non-CAD surfaces. One can observe that competitors can re-
cover correct topology information without degenerate elements,
but they fail to reconstruct the underlying shapes especially for
the region of the sharp features and fine details, as shown in
Fig. 12b-e. Our results are exhibited in Fig. 12f, from which we can
observe that our method is more robust to repair the hole areas
while recovering sharp features and fine details even varying
sizes and numbers of holes are considered (see the top five ex-
amples). For the features with weak edges, such as the last result
in Fig. 12f, our method and MSAT still show their superiority on
recovering fine details compared with the competitors although

the small-scale features are blurred to an extent. a

233
To further evaluate the inpainting deviation from the ground
truth, we use the max, mean and root mean square of vertex-
based Hausdorff distance to measure the position error between
the inpainted mesh and the ground truth, which is given in Ta-
ble 2. As can be seen, for CAD and non-CAD surfaces, our method
achieves the least errors (max, mean and root mean square) on
most examples.

Overall, our approach can well preserve local discontinuities,
especially sharp edges, with the optimized discontinuity function
v and recognize the intrinsic structures of the original shapes
while be coherent with the whole remaining shape.

6.3. Segmentation

Mesh segmentation is a fundamental but challenging problem
in geometric modeling and computer graphics, and widely used
in texture mapping [75], 3D morphing [76,77], simplification [45],
shape retrieval [78], skeleton extraction [79] and so on. In this
work, we segment meshes into piecewise smooth parts based
on geometric information rather than semantic information. In
contrast to semantic segmentation benchmarks [80], there is no
ground truth available for non-semantic segmentation, which
makes numerical evaluation difficult.

To perform this segmentation, we make use of the discon-
tinuity function v on edge function space obtained from our
NMSTV solver. Following [10], we first normalize v in the range
of [0, 1] and solve a minimum multicut problem in the triangle
adjacency graph using the Kernighan Lin method [72]. For each
edge e, we define the splitting probability of two adjacent tri-
angles belonging to different segments as the value 1 − ve and
orce this probability to 0.1% when adjacent triangles have their
regularized) normals further than 15◦ apart. Note that, our input
robability is defined on edge space directly and favors more

ccurate and smooth segmentation boundaries, which is different
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Fig. 14. Comparison of semantic segmentations (a–f) produced by [69–74] with our geometric segmentation (g). Meaningful semantics such as the base, the neck,
or the handle of this jar, are produced by semantic segmentations, while our geometric segmentation extracts piecewise smooth segments with clear boundaries
emphasizing the underlying geometric information.
Fig. 15. Comparison of segmentations on meshes with different levels of noise
(corrupted by Gaussian noise with σ = 0.1l̄e , σ = 0.2l̄e and σ = 0.3l̄e ,
respectively). Our method better recovers discontinuities consistent with the
geometric characteristics and achieves smoother segmented parts even to
extreme noise levels.

from the one in [10]. Fig. 13 shows our segmentation results on
both CAD and non-CAD models. One can observe that our method
can recover piecewise smooth segments with clear boundaries.

To further demonstrate the differences between our geometric
segmentation and state-of-the-art semantic segmentation meth-
ods, we show an example in Fig. 14. Our method produces
geometrically consistent segmentations with piecewise smooth
parts by minimizing a nonsmooth and nonconvex MSTV energy,
while semantic segmentation methods always output semanti-
cally meaningful parts from heuristics or learning from large
manually segmented Benchmarks [80].

Since the discontinuity function v plays an important role in
mesh segmentation, we compare our discontinuities to that of
MSAT [10] where v is discretized as a primal 0-form defined on
each vertex of the mesh, using meshes with varying amount of
noise shown in Fig. 15. In this experiment, we obtain MSAT’s
splitting probability on edge e by averaging the value 1 − ve of
both vertices of the edge, and set probabilities of both two meth-
ods to 0.1% when the normal angle between adjacent triangles
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in optimized mesh is large than 15◦. As can be observed that,
our recovered discontinuities keep a good consistency with the
geometric characteristics, achieving an almost similar value (close
to 1) in the smooth region while different values across the sharp
edges. Thus, our method ensures piece-wise constant disconti-
nuities to give a good guidance of producing better geometric
segmentations and is more robust to noise.

7. Conclusion

In this paper, we have proposed a Mumford–Shah tool for
mesh processing via nonsmooth nonconvex regularization, which
consists of a feature-preserving normal estimation and efficient
vertex updating. Moreover, the nonsmooth nonconvex Mumford–
Shah model is able to produce a detail-preserving face normal
field to eliminate the staircasing artifacts commonly appeared in
the results of TV-based models, and the vertex updating is more
robust to noises guided by a feature field. Efficient algorithms
have been developed for both optimizations and produced state-
of-the-art results for various geometry processing problems such
as mesh denoising, mesh inpainting and mesh segmentation.

Some future works are left open. Since our method has satis-
fied the unit length constraints for face normal vectors by simple
projection, we cannot ensure the integrability of face normals.
Meanwhile, we do not explicitly prevent the self intersection in
our vertex updating. How to incorporate global constraints into
the solver to avoid the above limitations simultaneously could be
investigated in the future. Although the proposed MS framework
has been only considered on the filtering of face normals, it is
general enough to be applied for other scenarios such as texture
colors, shape operators and other geometric representations such
as point clouds and implicit surfaces.
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